Co-registration of mouse cursor and eye movements reveals comparable sensitivity of mouse and eye-tracking to prediction during language comprehension

Kayla Keyue Chen*, Yiling Huo*, Jiajian Xu, Zunni Wang, Fan Xia, and Wing-Yee Chow

Division of Psychology and Language Sciences, University College London, London, UK

- Mouse cursor tracking is becoming a popular tool for psycholinguists [1], but it is unclear whether it is as sensitive as other methods such as eye-tracking.
- In this study, we tested whether listeners of Mandarin Chinese can use nominal classifiers and tonal information in pre-classifier numerals to make predictions about upcoming words.
- We registered listeners' eye- and mouse cursor-movements simultaneously.

For numeral tone, we tested the yi sandhi using the numeral yi ('one') and the T3 sandhi using the numeral liang ('two').

Results

 Mouse cursor tracking and eye-tracking results were highly comparable, and replicated existing eye-tracking results that listeners used nominal classifiers [2,3], but not numeral tones [4], to predict.

Methods

- Participants (n=47) viewed pairs of images on the top corners of the screen while listening to simple instructions, which contain a critical NP consisting of a numeral, a classifier, and a noun (Fig. 1).
- Participants started each trial by clicking on a black circle at the bottom centre of the screen. Once they started moving the cursor upwards, the instruction was presented auditorily with a syllable onset asynchrony (SOA) of 500ms.

Exp 1A (classifier)

 The target and competitor were associated with different nominal classifiers in Mandarin Chinese in the Experimental condition, but they shared the same classifier in the Control **Fig. 2**. Change of proportion of **eye fixations** on the target and competitor object across all conditions. Solid dots and horizontal error bars indicate the mean onset of significantly more looks to the target object and 95% confidence intervals of the mean.

Fig. 3. Change of the **cursor's x-coordinate** in mouse cursor positions across all conditions. Solid dots and horizontal error bars indicate the mean onset of significant deviance from the midline (X=0) towards the target object and 95% confidence intervals.

condition.

• The classifier was informative of the target's identity in the Experimental condition only.

Exp 1B (numeral tone)

- The two object labels always required distinct nominal classifiers and they differed in whether they triggered a change in the lexical tone (aka tone sandhi) in the preceding numeral (or not).
 - The tone of the pre-classifier numeral was informative about the upcoming classifier and noun in the Experimental condition but not in the Control condition.

Exp 1A (classifier)

- Eye-tracking: significantly faster looks to the target object in the Experimental condition (Fig. 2A).
- Mouse cursor tracking: significantly faster mouse cursor movements towards the target in the Experimental condition (Fig. 3A).

Exp 1B (numeral tone)

- No significant differences in divergence points were found between conditions in either eye or mouse cursor movements (Figs 2B, 2C, 3B, 3C).
- Divergence points [5] in eye movements and mouse movements were highly similar (mean mouse-eye difference = 74.2ms, max = 107ms).
- We obtained highly similar results in a follow-up experiment (n=31) using a slower speech rate (800ms SOA).

Fig. 1. A sample visual display of materials.

Conclusion

- Replicating previous studies [2-4], we found that Mandarin Chinese listeners could use nominal classifiers, but not tone sandhi in a numeral, to predict upcoming language.
- Crucially, the divergence points detected in mouse movements and those detected in eye movements are remarkably similar.
- ★ Our results suggest that mouse cursor tracking has comparable sensitivity to prediction during language comprehension to eye-tracking.

References

[1] Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). *Proceedings of the National Academy of Sciences*, 102(29), 10393-10398. [2] Chow, W. Y., & Chen, D. (2020). *Language, cognition and neuroscience*, 35(9), 1149-1161. [3] Klein, N. M., Carlson, G. N., Li, R., Jaeger, T. F., & Tanenhaus, M. K. (2012). In *Count and mass across languages*, 261-282. [4] Huo, Y. & Chow, W.Y. (2022) Poster presented at the Architectures and Mechanisms of Language Processing (AMLaP) 2022. [5] Stone, K., Lago, S., & Schad, D. J. (2021). *Bilingualism: Language and Cognition*, 24(5), 833-841.